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On the generation of spatially growing waves 
in a boundary layer 
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The solution is obtained in general terms for the velocity fluctuations generated 
in a laminar boundary layer by an oscillating disturbance on the boundary wall. 
The form of excitation is chosen to represent a vibrating ribbon of the type used 
by Schubauer to force disturbances in boundary layers. The forced wave system 
generated by the ribbon is shown to be a spatially growing one, which is described 
far downstream by an eigenmode of the system which has a complex wave- 
number. 

1. Introduction 
The theoretical study of hydrodynamic stability deals solely with the be- 

haviour of unexcited free modes. The detailed mechanisms of the initial creation 
of these modes are not considered. In  boundary layers, for example, travelling 
wave disturbances have been observed in the transition zone, and although 
stability theory attempts to describe their growth no effort has so far been made 
to discuss the process of their generation. The origin of these waves is rather 
loosely attributed to such external factors as noise, free-stream turbulence and 
wall roughness. To understand more about transition it is necessary to investi- 
gate these initial stages in the formation of travelling waves, and in this paper 
an attempt will be made to study certain simple forced oscillations and show that 
a disturbance like Schubauer’s ribbon excites a spatially growing wave. 

Much of the detailed experimental work on stability has necessarily been 
carried out on some form of forced oscillation and it is therefore important to 
be able to relate these observed driven modes with those free waves theoretically 
discussed. In  their now classic experiment Schubauer & Skramstad (1947) used 
a vibrating ribbon to excite waves in a boundary layer on a flat plate. The 
behaviour for free modes calculated by Schlichting (1933, 1935) was followed 
reasonably well in most respects by these forced oscillations. However, in the 
experiment the steadily vibrating ribbon quite naturally generated a train of 
waves which grew (or decayed) spatially as they propagated away from the 
source, while the theoretical treatment discussed a wave system which grew in 
amplitude with respect to time. Schubauer compared the theoretically predicted 
temporal growth rates with those apparent to an observer moving with the wave 
system in the experiment. However, if there is any dispersion there is no justifica- 
tion for this procedure, and it is necessary to transform from temporal to spatial 
growth using the group rather than the phase velocity. Schlichting did in fact 
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choose to use the group velocity to obtain rates of spatial growth, but he offered 
no justification for this step. A proof of this relationship between the two 
amplification parameters has been given (Gaster 1962) for cases where the ampli- 
fication rates are small, as in boundary layer and other similar flows. Now, in 
the case of the flat-plate boundary layer both experiment and theory have shown 
that the wave speed is almost independent of wave-number. Thus the group and 
phase velocities are roughly equal and a reasonable agreement between theory 
and experiment was achieved by Schubauer. 

Attempts to examine the spatial growth of linear disturbances have been 
made by Criminale & Kovasnay (1962) and Brooke Benjamin (1961), who ex- 
amined the behaviour of pulses of waves propagating downstream. The in- 
dividual waves were temporallygrowing, but by following the wave packet, which 
travels a t  the group velocity, a spatial growth can be derived. In  fact, for the 
small rates of amplification arising in boundary-layer flows this procedure will 
lead to the correct result because of the special relationship between the two 
rates of growth. But in general the integrals involved in the analysis should be 
carried out on some contour in the complex wave-number plane in order to 
provide the best form of asymptotic expansion. If this is done the wave packet 
will be composed of modes which are exponential in both space and time. 

It will be shown that the experimentally observed type of wave can be treated 
theoretically by considering a class of possible solutions to the Orr-Sommerfeld 
equation that are spatially exponential. Spatially growing waves of finite ampli- 
tude have been studied in plane Poiseuille flow by Bradshaw, Stuart & Watson 
(1960) and Watson (1962). It is argued by Lin (1955) that solutions of this form 
are not allowed in a linear theory where the amplitude must be bounded for all x. 
Although it is true that any spatially growing linear theory must fail sufficiently 
far from the source, it is not unreasonable to apply such a theory to some region 
where non-linear effects are small. 

In  order to be able to solve the linearized perturbation equations of motion 
it is necessary to use the parallel mean flow approximation to simplify the prob- 
lem as much as possible. That is, the section of boundary layer under investiga- 
tion is considered to be sufficiently parallel to allow one to neglect terms arising 
from variations of mean flow with x. This approximation has been justified 
by Pretsch (1941) who showed that for neutral modes in the zero-pressure- 
gradient case the additional terms are negligible, particularly at high Reynolds 
numbers. In  discussions on boundary-layer stability it is usual to consider an 
infinite parallel flow having a uniform mean velocity profile given by that of the 
real flow at some station of interest. This infinite flow field model appears to 
confine the possible modes of instability to those periodic in x, but there seems to 
be no reason why such a restriction should apply to the reaI boundary-layer 
problem which is not of infinite extent. The parallel flow treatment essentially 
offers a simplification to the equations of motion over some region of the flow, 
and in the following analysis we will consider the behaviour of forced types 
of disturbance within this region. Forcing will be provided by a modification to 
one of the boundary conditions at the wall to simulate roughly the effects of a 
vibrating ribbon, which has so often been employed in experiments on instability 
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waves (Schubauer & Skramstad 1947; Liepmann 1943, 1945; Klebanoff & Tid- 
strom 1959 and Klebanoff, Tidstrom & Sargent 1962). It will be shown in the 
following analysis that the group velocity is the proper parameter deciding the 
direction of disturbance propagation, and its sign is thus of vital importance 
when discussing wave growth. In  solutions of the Orr-Sommerfeld equation for 
boundary layers and other similar almost parallel flows which have velocity 
profiles without any reversed flow, i t  appears that the group velocity is always 
positive, although there is no a priori reason why this should be so. We will 
consider both positive and negative values of the group velocity, although the 
latter case may have no physical significance in the types of flow usually 
considered. 

2. Formulation of the problem 
The behaviour of small-amplitude disturbances in a given parallel mean flow 

is governed by a set of equations which become homogeneous after linearization 
with respect to the disturbance amplitude. As the boundary conditions are also 
homogeneous the problem is a characteristic-value one for the determination of 
the possible eigenmodes. A disturbance can be forced either by a modification to 
the equations by the addition of some body-force terms, or by a change in the 
boundary conditions so that they are no longer homogeneous: In  this paper we 
will discuss the effect of altering one of the boundary conditions to simulate 
an excitation like Schubauer’s ribbon. 

The boundary conditions to be imposed on the perturbation stream function 
are : 
at the wall 

where Q(x,t)  is some specified forcing function, 
far from the wall, at yl, say, the perturbation must decay, i.e. 

y = 0, u = a$b(o;z,t)/ay = 0, v = -a$(o;x , t ) /ax  = &(z,t), 

u = a$(yl; x, t)/ay --f 0 and v = - a$b(yl; x, t)/ax -+ 0 as y1 -+ co. 
A form of Q(x,t)  roughly simulating a ribbon vibrating near the surface is 

6(x) cos wt. However, in attempting to evaluate $(y; x, t )  for this disturbance it 
is not possible to decide which is the correct integration contour so that more than 
one solution appears to be possible. This difficulty commonly arises in wave 
problems but usually one can reject the spurious solution by physical reasoning. 
For example, one may reject a solution which enables energy to propagate 
towards the source. Arguments of this type are avoided in the present analysis 
by considering the disturbance 

Q(X’ t )  = d(X) coswt (t  > O ) ,  

= o  ( t  < 01, 

and finding the asymptotic solution for large t. Any ambiguity in the contour 
to be taken can then be avoided by applying the initial condition that no per- 
turbation exists anywhere in the flow prior to time t = 0. 

We can define the perturbation stream function of the disturbance by 

$(y; z , t )  = c1 S + m c 2 S  + m ~ ( y ;  a,P)ei(as-/t)cicrdfi, (1) 
--m - m  

28-3 
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where the integrals are evaluated along contours c1 and c2 in the a and P planes 
respectively. If we assume that @ is continuous and has continuous derivatives 
along c1 and c2, (1) can be substituted into the linearized equations of motion 
for parallel mean flows to yield the Orr-Sommerfeld equation, 

where U(y) is the mean flow, R the Reynolds number and primes denote differen- 
tiation with respect to y. At this stage in the analysis both the wave number a 
and the frequency P are considered to be generally complex parameters. 

q52, q53 and 
q54 so that the general solution is 

( 3 )  
Lin has pointed out that each of these fundamenta1 solutions must be entire 

functions of y because all of the coefficients in ( 3 )  are regular everywhere in the 
finite part of the complex y-plane. He further remarked that these solutions 
are also entire functions of the parameters a and P in the same domain. However, 
some care is needed here, for not all forms of possible solutions q51, etc., are 
necessarily without branch points, although by combining these in various ways 
one can always obtain four fundamental functions which are single valued. 
In  the following work we shall assume that the forms of solution selected are 
entire functions of both a and P. To retain this property over the whole of the 
a and P planes it is necessary to restrict the analysis to problems of flows in 
parallel strips, the boundary-layer problem being considered as the limiting 
case where the upper boundary tends to infinity. This restriction is imposed 
because the determinantal equations for the constants A ,  B, C and D contain 
some elements which tend to infinity with y and other ones which tend to zero. 
It is therefore necessary to expand the determinants before taking the limit as 
the upper boundary goes to infinity. 

( U ( y ) - p / a ) ( @ ' t - a 2 @ ) -  U ( y )  @ = (-i/aR)(~'V-2a2@"+a4CD), (2) 

The fourth-order equation in CD has four fundamental solutions 

@(Y) = 4 1  + Bq52 + (3% + 044. 

In terms of @ the boundary conditions are 

@(y1; a,P) -9 0, @'(y1; a,P) -+ 0 as y1-+ a, 
and O'(0; a,P) = 0 at y = 0. 

The remaining boundary value on CD(0; a, P )  is obtained by inverting equation (1).  
In  general (1) cannot be inverted by Fourier's theorem unless it can be shown that 
the integrand is analytic within the regions containing the contours c1 and c2. 
For the particular case of obtaining @(O; a,P) i t  will later be shown that the 
integrand is in fact analytic over the whole a-plane and in the upper half of the 
P-plane so that the inversion formula can be used provided c2 is in the upper half 
.of the P-plane. 

From (l), 

Using Fourier's inversion formula we obtain 

-ia@ (0; a,P) = - 6(x) cos wt e-i(az-Pi)dxdt ( 4 )  

or @(0; a,P) = - p / 4 n 2 a ( p - d )  (5) 
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provided that Pi (the imaginary part of /3) is greater than zero so that the integral 
converges as t tends to infinity. The same restriction must be imposed when ( I )  
is evaluated in the /3-plane; c2 must lie in the upper half-plane. 

From (1) and (5) we obtain 

For the special case of w(0; x, t )  the integrand reduces to /3/(P2- w2) which is 
analytic over the whole a-plane and also in the upper half of the /3-plane as 
required for the application of the inversion formula. 

Free modes of the system are obtained by equating the input disturbance to 
zero, 

0; a,P) = 0, (7)  

which is the characteristic equation describing all the possible eigenmodes of the 
Orr-Sommerfeld equation with both a and as complex parameters. 

3. Evaluating the integral 
Before evaluating (6) it is necessary to discuss the behaviour of the function 

@(y; a,P) over the a and ,8 planes. Since @(y; a,P) is an entire function of the 
parameters a and /3 it follows that the ratio @(y ; a, /3)/@(0; a, P)  must be mero- 
morphic, the poles arising from the zeros of @ ( O ;  a,P). @ ( O ;  a,P) is an entire 
function of a for every value of p and may thus be represented by a polynomial. 
By factorising this polynomial we can obtain all the solutions of equation ( 7 ) ,  
the number of solutions being given by the highest power arising in the poly- 
nomial. Each one of these solutions gives rise to a pole in the integrand of (6) 
and so contributes to the perturbation. However, from previous studies of sta- 
bility problems, where one is interested in the most highly amplified (or least 
damped) mode, it is found that only one important solution arises and this 
mode has a positive wave speed (/3,/a, > 0). As all other modes are highly damped 
they will not produce any significant contributions to the overall value of (6) 
and will therefore be neglected. In  addition to this pole on the a-plane which is 
related to the free mode behaviour, there will in general also be poles along the 
imaginary axis to determine the transient nature of the solution. 

In  order to simplify the evaluation of (6) it  is convenient to change the range 
of integration. (6) may be written 

By changing the sign of a and ~3 and rearranging the limits the second integral 
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Now on changing the sign of a, and p in the Orr-Sommerfeld equation the 
complex conjugate equation is formed. Thus @(y; -01, -p )  and Q(y; a,B) 
must also be complex conjugates and we can write 

where Re { 1 denotes the real part of { }. 
It remains to discuss the behaviour of Q(y)/Q(O) for large real values of a and 

j? to show that the integrals converge. We can obtain the asymptotic form of the 
solution of the Orr-Sommerfeld equation as a, and ,8, tend to infinity. Consider 
first the case of large positive wave-number, i t  is clear that the first term of an 
asymptotic expansion in a, will consist of terms like ye++U and e f a p g .  Now the 
perturbation velocities must tend to zero for large y, and therefore taking the 
negative exponent we see that Q(y) must be exponentially small for large a, for 
all values of y greater than zero, that is Q(y)/@(O) behaves like e-apY for large a,. 
Also for large negative values of a, it  is clear that @(y)/@(O) decays like e'rY. 

Convergence over the /3-plane can be demonstrated in a similar manner by taking 
the major terms in the expansion of @ for large p,. 

Integrating (6) with respect to a we will consider two possible paths of integra- 
tion, the correct contour being revealed only after carrying out the integration 
over the ,&plane and fitting the initial conditions. First, we will discuss the con- 
tributions of a pole away from the imaginary axis, later the effect of a pole on this 
axis will be deduced. This procedure is permissible since the resulting solution 
will be made up from the sum of all individual contributions arising from the 
separate poles in the a-plane. 

(a )  Contour (a )  is deformed so that it passed from - 03 to + 03 above the pole. 
For positive values of x the contour may be closed by an infinite semi-circle in 
the upper half plane, but since the integrand is analytic within this enclosed 
region the integral is zero. 

I = 0 for x > 0,  

where I is the contribution to v(y; x, t )  of this pole. For negative x the contour 
is closed in the lower half-plane which therefore encloses the pole. I is given by 
the residue of this pole a t  .(/I) where @(0; a(,@, p) = 0: 

(9) 
( b )  The second contour is chosen to pass below the pole 

and I = 0 for x < 0. (11) 

The final solution is obtained after integrating over the /I-plane. First, con- 
sider the contour (a)  in the a-plane. (9) must be evaluated along a path just above 
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the real axis to ensure the convergence of (4). Expanding a(P) near the real axis 
we get 

x exp i[{a(Pr) + ipi da(@,)/dP) x - Pr t - iPi t ]  d/3 . ( 1 2) 

The integration contour can be closed by a path from the origin to infinity 

I 
in such a way that the exponent in (12) is negative, that is 

Since the pole at a(P) does not lie on the imaginary axis (ai(/3,) =l= 0) we can select 
a value of pi for every P, to satisfy (13) provided {aa,(P,)/ap,) x - t is not small. 
The case of large ai(pr), or small aa,(,8,)/3,8, will be considered later. Now provided 
condition (13) holds, the contribution to the value of the integral along this path 
tends to zero, the asymptotic value for large t being given solely by the residue of 
the pole if this is enclosed by the integration circuit, that is if Pi < 0 when @, 
equals w.  

Thus for Pi(w) < 0 we have 

-exp [;(a(@) x - w t ) ]  
- i  @(y; a(o), w )  
2 a@(o; a(w) ,w) / i ia  

aiid for pi(@) > 0, I --f 0. 
The initial condition that no disturbance exists prior to time t = 0 is only satis- 

fied for a path not eiiclosing the pole, that is for Pi(u) > 0. It follows that contour 
(a)  in the a-plane can only be used when aa,(w)/ap, < 0. Contour ( b )  allows a 
similar analysis to be performed, aiid this shows that the initial unperturbed 
state can only be complied with if aa,(w)/aP, > 0. 

The contribution to v(y;  x , t )  of the remaining poles situated along the im- 
aginary axis in the a-plane can be found by a technique similar to that used for 
a pole off the axis. It is not difficult to show that the path of integration in the 
a-plane must pass through the origin if the final solution is to comply with the 
initial condition of zero disturbance in the flow before the excitation starts a t  
t = 0. The terms arising from poles of this type are of the form 

(i) ai(w) < 0 I - Re {exp [ - ai(w) x- iwt]) (x > 0) 

= 0  (x < 0); 

(ii) ai(o) < 0 r = 0  (x ' 0) - R,e (exp [ - ai(o) x - iwt]) (X < 0). 

The sum of a set of terms like this will be of the form 

Re {e-i"fP(x)}, (15) 

where P ( x )  is a function which decays for both positive and negative values of x. 
(15) represents the transient part of the disturbance. 
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Far from the source (15) will have decayed and any disturbance arises solely 
from the isolated pole in the a-plane whichoccurs through the zero in Q(0;  a ( o ) , w ) ,  
and is thus related to an eigenmode of the system. For the usual case where 
aa,.(w)/a,8, is positive, the solution exists only downstream of the source and is 

In  flows with aar(w)/a,8, negative the disturbance exists upstream of the point 
of the input and is given by (14). In  bounda,ry layer flows we can expect the 
amplification factor ai(w) to be quite small compared with the wave number 
a,(w), and it can therefore easily be shown, that, for a characteristic equation 

F(a,P) = 0, 

we have 

where aim is the maximum value of ai and a,8,.laa, is the group velocity. aarla/3, 
has the same sign as the group velocity and is approximately equal to its 
reciprocal. 

4. Discussion 
In  the types of flow normally of interest the group velocity is positive and a 

ribbon type of disturbance therefore excites a travelling wave system downstream 
of the source. This mode will have a wave-number a identical to that of the free 
eigenmode which has the same frequency as the ribbon. Now, this wave-number 
will in general be complex, demonstrating that the mode excited by a vibrating 
ribbon is indeed one having spatial growth as observed in experiment. 

Before passing on to any further discussion arising from these complex wave- 
number modes, it  is worth examining briefly cases where the group velocity is 
negative, and the train of waves generated by the source propagates upstream. 
After sufficient time has elapsed from starting the ribbon in motion the whole 
upstream region will be covered with waves, and any upstream propagating 
disturbances would presumably effect the whole flow field by creating turbulence 
ahead of the source. 

It has been shown that a spatially growing wave pattern is generated by a 
localized oscillating source, such as a ribbon, and it is therefore necessary to re- 
evaluate amplification rates for these modes. However, it  can be shown (Gaster 
1962) that for the small rates of amplification expected in boundary layers a 
simple transformation enables the spatial growth to be derived from the temporal 
growth, but for wake or jet flows it is necessary to solve the Orr-Sommerfeld 
equation for ,8 real and a complex to represent satisfactorily waves of the type 
discussed here. A further complication arises in the study of amplified three- 
dimensional waves of spatially growing kind, because Squire’s ( 1933) transforma- 
tion cannot be applied directly when a is complex, and it is therefore no longer 
clear that these waves cannot play an important part in the transition process, 
even in regions of linear growth. 
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